Understanding of plant-soil health for sustainable banana production

Dr. Tony Pattison, Tegan Kukulies, Wayne O’Neill
Department of Agriculture, Fisheries & Forestry Queensland

Dr. Agustin Molina
Bioversity International
Outline

Concepts

Agriculture
Soil health model
 Indicators
 Soil functions
 Constraints
 Management practices

Examples

Example 1: Soil amendments
Example 2: Disease suppression
Agriculture production characteristics

Industrial agriculture
- Ease of management important
- Monocultures
- Crops and cultivars selected for markets
- Intensive inputs

Subsistence agriculture
- Management complex
- Diversity of crops
- Crops and cultivars selected for taste and replanting
- Low input
What is constraining banana production?

Potential production

Actual production
Model for soil health

Soil indicators
- Physical
- Chemical
- Biological

Constraints
- Inherent
- Induced

Soil functions
- Structural
- Nutritional
- Hydrological
- Pathological
- Toxicological

Management
- Soil
- Plant

Enviro-impact
- Nutrient loss
- Sediment loss
- Chemical loss

Production
- Yield
- Economics
- Disease

Department of Agriculture, Fisheries and Forestry
Model for soil health

Soil indicators
• Physical
• Chemical
• Biological
Physical soil health indicators

Inherent constraints

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>52%</td>
<td></td>
</tr>
</tbody>
</table>

Induced constraints

- Common constraints: low water and nutrient holding capacity, acidity, low organic matter, hard setting, compaction.
- Moderate bulk density, giving moderate aeration and root penetration.

Department of Agriculture, Fisheries and Forestry
Chemical soil health indicators

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Unit(s)</th>
<th>{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (1:5 Water)</td>
<td></td>
<td>4-9</td>
<td>Slightly acid 1.0-5.5 Slightly alkaline 8.0-9.0</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>dS/m</td>
<td>0-1</td>
<td>Good</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/kg</td>
<td>0-10</td>
<td>Good</td>
</tr>
<tr>
<td>Nitrate Nitrogen</td>
<td>mg/kg</td>
<td>0-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Phosphorus (Colwell)</td>
<td>mg/kg</td>
<td>0-80</td>
<td>High</td>
</tr>
<tr>
<td>Phosphorus Buffer Index (PDI-Col)</td>
<td></td>
<td>0-350</td>
<td>High</td>
</tr>
<tr>
<td>Calcium (Amm-acet.)</td>
<td>Meq/100g</td>
<td>0-10</td>
<td>Low</td>
</tr>
<tr>
<td>Potassium (Amm-acet.)</td>
<td>Meq/100g</td>
<td>0-3</td>
<td>High</td>
</tr>
<tr>
<td>Magnesium (Amm-acet)</td>
<td>Meq/100g</td>
<td>0.1-1</td>
<td>Low</td>
</tr>
<tr>
<td>Sodium (Amm-acet.)</td>
<td>Meq/100g</td>
<td>0.01-0.1</td>
<td>Good</td>
</tr>
<tr>
<td>Cation Exchange Cap.</td>
<td>Meq/100g</td>
<td>0-5</td>
<td>Low</td>
</tr>
<tr>
<td>Aluminium Saturation</td>
<td>%</td>
<td>0-20</td>
<td>Good</td>
</tr>
<tr>
<td>Copper (DTPA)</td>
<td>mg/kg</td>
<td>0.1-1</td>
<td>Good</td>
</tr>
<tr>
<td>Iron (DTPA)</td>
<td>mg/kg</td>
<td>0.1-1</td>
<td>Good</td>
</tr>
<tr>
<td>Manganese (DTPA)</td>
<td>mg/kg</td>
<td>1-10</td>
<td>Good</td>
</tr>
<tr>
<td>Zinc (DTPA)</td>
<td>mg/kg</td>
<td>0.1-1</td>
<td>Good</td>
</tr>
<tr>
<td>Sulphate Sulfur (MCP)</td>
<td>mg/kg</td>
<td>0-50</td>
<td>Low</td>
</tr>
</tbody>
</table>
Biological soil health indicators

<table>
<thead>
<tr>
<th>Soil Nematode Community</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Nematode Population</td>
<td>343</td>
</tr>
<tr>
<td>Bacterial Feeding Nematodes</td>
<td>111</td>
</tr>
<tr>
<td>Fungal Feeding Nematodes</td>
<td>57</td>
</tr>
<tr>
<td>Plant Parastic Nematodes</td>
<td>114</td>
</tr>
<tr>
<td>Predator & Omnivore Nematodes</td>
<td>61</td>
</tr>
</tbody>
</table>

Nematode comments:

A good balance of nematodes that feed on organic matter decomposers, roots and other soil organisms. Suggests that carbon is entering the soil food web from multiple sources and being recycled.

<table>
<thead>
<tr>
<th>Biochemical</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Labile Carbon</td>
<td>0.30 g/kg</td>
</tr>
<tr>
<td>Microbial Activity (FDA)</td>
<td>25.3 mg/kg/hr</td>
</tr>
<tr>
<td>Cellulose degradation (β-Glucosidase)</td>
<td>17.9 μg pNP/g/hr</td>
</tr>
<tr>
<td>Organic Carbon</td>
<td>1.8 %</td>
</tr>
</tbody>
</table>

Nematode diversity	High to moderate nematode diversity
Structure Index	Good to moderate soil food web structure and activity of predators
Enrichment Index	Balanced levels of nutrients available to the soil food web
Endoparasitic nematodes	No plant-parasitic nematodes feeding within the roots of bananas
Labile Carbon	Low to moderate active soil carbon levels and low to moderate biological activity
Microbial Activity (FDA)	Moderate to low biological activity
Cellulose degradation (β-Glucosidase)	Moderate to low cellulose degradation by microorganisms
Organic Carbon	Moderate carbon levels
Soil biology

~800 million bacteria
Soil biology

~800,000 fungal forming units = ~42 m of fungal threads (hyphae)
Soil biology

~8 million actinomycetes (bacteria with threads like fungi)
Soil biology

Up to ~1,300 nematodes
~137 mites

Soil biology
Soil biology

~1 ant
Soil biology indicators — “diagnostic”

Soil nematode community structure

- Plant-parasitic nematode
- Fungal-feeding nematode
- Bacterial-feeding nematode
- Predatory nematode

Soil biochemical activity

- KMnO₄ reducable C
- Fluorescein diacetate
- β-glucosidase
Soil biology indicators – “explanatory”

Molecular methods
- e.g. TRFLP,
- 454 pyrosequencing

Physiological profiling
- e.g. Biolog ecoplates

Traditional methods
- e.g. Selective media
Model for soil health

Soil indicators
- Physical
- Chemical
- Biological

Soil functions
- Structural
- Nutritional
- Hydrological
- Pathological
- Toxicological
Soil health functions

Agricultural soil functions = production

- Support plant growth
- Supply nutrients
- Supply water
- Suppress pests & disease
- Soil biodiversity
- Filter toxins

Soil structural stability
- Store & Recycle nutrients
- Store water

Ecosystem soil functions = Enviro-impact

- Remove toxins and heavy metals
- Regulate green house gases

Department of Agriculture, Fisheries and Forestry
Linking soil indicators with soil functions

Soil health indicators

Physical
- ↑ Bulk density

Chemical
- ↑ Nitrate-N
- ↓ Organic C

Biological
- ↓ Diversity
- ↑ Parasites

Soil functions

Outputs

- Structure
- Nutrition
- Water
- Pests & disease
- Toxins
- GHG

Production

Enviro-impact

Department of Agriculture, Fisheries and Forestry
Linking soil indicators with soil functions

Soil health indicators
- Physical
 - Bulk density
- Chemical
 - Nitrate-N
- Biological
 - Organic C
 - Diversity
 - Parasites

Soil functions
- Structure
- Nutrition
- Water
- Pests & disease
- Toxins
- GHG
- Production
- Enviro-impact

Outputs
- Good
- Caution
- Constrained
<table>
<thead>
<tr>
<th>Cause</th>
<th>Compaction</th>
<th>Tillage</th>
<th>Nutrient overuse</th>
<th>Low biodiversity</th>
<th>Pesticide use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>Erosion</td>
<td>Low organic C</td>
<td>Erosion</td>
<td>Acidification</td>
<td>Economic</td>
</tr>
<tr>
<td>Enviro-impact</td>
<td>Erosion</td>
<td>N leaching</td>
<td>Acidification</td>
<td>Poor disease suppression</td>
<td>Poor nutrient recycling</td>
</tr>
<tr>
<td>Economic</td>
<td>Low organic C</td>
<td>P loss</td>
<td>Acidification</td>
<td>Poor disease suppression</td>
<td>Poor nutrient recycling</td>
</tr>
<tr>
<td>Economic</td>
<td>Acidification</td>
<td>Economic</td>
<td>Pests & pathogens</td>
<td>Economic</td>
<td>Economic</td>
</tr>
</tbody>
</table>
Model for soil health

- Soil indicators
 - Physical
 - Chemical
 - Biological

- Constraints
 - Inherent
 - Induced

- Soil functions
 - Structural
 - Nutritional
 - Hydrological
 - Pathological
 - Toxicological

- Enviro-impact
 - Nutrient loss
 - Sediment loss
 - Chemical loss

- Production
 - Yield
 - Economics
 - Disease

- Management
 - Soil
 - Plant

Department of Agriculture, Fisheries and Forestry
Linking management with soil functions

<table>
<thead>
<tr>
<th>Practice</th>
<th>Soil Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
</tr>
<tr>
<td>Pre-plant</td>
<td>Tillage</td>
</tr>
<tr>
<td></td>
<td>Fallow crop</td>
</tr>
<tr>
<td></td>
<td>Organic amendment</td>
</tr>
<tr>
<td>Post-plant</td>
<td>Fertiliser</td>
</tr>
<tr>
<td></td>
<td>Insecticide</td>
</tr>
<tr>
<td></td>
<td>Herbicide</td>
</tr>
<tr>
<td></td>
<td>Biofertiliser</td>
</tr>
<tr>
<td></td>
<td>Organic amendment</td>
</tr>
<tr>
<td></td>
<td>Cover crop</td>
</tr>
</tbody>
</table>

Legend:
- **Positive**
- **Caution**
- **Unsure or no effect**
Example 1: Soil amendments in bananas

• **Constraints:**
 – **Inherent:** dermosol (28% sand, 42% silt, 30% clay)
 – **Induced:** compaction, poor drainage, weak aggregate stability, low organic C, low soil biological diversity.

• **Practices:**
 – Amendments:
 • Mill ash
 • Mill mud
 • Compost
 • Organic matter
 • Untreated / bare

• **Indicators**
 – **Agronomic:** Bunch size
 – **Physical:** bulk density, infiltration, aggregate stability
 – **Chemical:** pH, EC, Labile C
 – **Biological:** Nematode community
Example 1: Soil amendments in bananas

- Grass Hay
- Mill Mud
- Bare soil
- Banana Trash
- Mill Ash
- Bedminster Compost

Department of Agriculture, Fisheries and Forestry
Example 1: Soil amendments in bananas

Agronomic measurements: Banana bunch size

Diagram showing the effect of different soil amendments on finger number per bunch. The amendments include Mill ash, Compost, Hay + trash, Mill mud, and Untreated. The graph compares the finger number per bunch between the plant crop and the 1st and 2nd ratoon.
Example 1: Soil amendments in bananas

- Mill ash and organic matter had significantly lower bulk density relative to untreated soil.
- Mill ash had significantly increased water infiltration relative to untreated soil.
Example 1: Soil amendments in bananas

Labile C content in soils

- All treatments significantly increased labile C by the end of the experiment.
Example 1: Soil amendments in bananas

Proportion of nematodes belonging to trophic groups at the termination of the experiment.

![Graph showing nematode feeding groups (%) for different treatments including Mill ash, Compost, Hay + trash, Mill mud, and Untreated. The graph uses colors and labels to indicate the proportion of different trophic groups.](image)

- **Mill ash**
 - Plant-parasites: a
 - Bacterivores: ns
 - Fungivores: ns
 - Predatory & Omnivores: a

- **Compost**
 - Plant-parasites: a
 - Bacterivores: ns
 - Fungivores: ns
 - Predatory & Omnivores: ab

- **Hay + trash**
 - Plant-parasites: b
 - Bacterivores: ns
 - Fungivores: ns
 - Predatory & Omnivores: a

- **Mill mud**
 - Plant-parasites: a
 - Bacterivores: ns
 - Fungivores: ns
 - Predatory & Omnivores: b

- **Untreated**
 - Plant-parasites: a
 - Bacterivores: ns
 - Fungivores: ns
 - Predatory & Omnivores: b
Example 1: Soil amendments in bananas

- 1st banana crop production was stimulate by “fast” acting amendments.
- 2nd banana crop production constraints were masked by high fertiliser applications.
- 3rd banana crop production was greatest by overcoming physical soil constraints.
- Overcoming physical constraints also increased the antagonistic potential of the soil and reduced plant-parasitic nematodes.
Example 2: Disease suppression

- **Constraints:**
 - **Inherent:** Ferrosol (49% sand, 26% silt, 25% clay)
 - **Induced:** compaction, low CEC, acidity, low soil biological diversity, *Fusarium* wilt.

- **Practices:**
 - Reduction in inoculum
 - Increased plant tolerance / reduced plant stress
 - Increased antagonistic organisms

- **Indicators**
 - **Agronomic:** Bunch weight, bunches harvested
 - **Physical:** bulk density, infiltration, aggregate stability
 - **Chemical:** pH, EC, Labile C, available nutrients
 - **Biological:** Nematode community, soil enzyme activity
Example 2: Disease suppression

Disease suppression

In spite of the presence of a pathogen and susceptible host, disease does not occur.

Specific suppression

Depends on a single organism with the ability to antagonise a specific pathogen

e.g. Trichoderma sp.

General suppression

The capacity of the total microbial biomass to suppress growth or activity of pathogens

e.g. disease suppressive compost in some crops.
Soil ecology facts

• 1-10% of soil bacteria are cultivable. “the great plate anomaly”, (Amann et al 1995)

• The zone with one of the highest concentrations of bacteria in the soil is around the roots. *The rhizosphere*. (Doornbos et al 1995)

• 30-40% of the carbon fixed by plants for the atmosphere through photosynthesis leaks through the roots. (Bais et al 2006).

• Up to 35% of the soil organisms showed antagonistic capacity to inhibit growth of pathogens in vitro (Berg et al 2002, 2006)
Example 2: Disease suppression

- Suppression = f (Environment + Management (soil + crop))
Example 2: Disease suppression

Management options and practices

Broad focus on general suppression

Research Focus

Specific suppression

Time & investment of research

- Indicators of disease suppression
- Diagnostic soil health indicators
- Explanatory soil health indicators
- Identification of suppressive mechanism

Department of Agriculture, Fisheries and Forestry
Example 2: Disease suppression

<table>
<thead>
<tr>
<th>Hygiene</th>
<th>Practice</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>aspirational</td>
</tr>
<tr>
<td></td>
<td>Removal of crop residue</td>
<td>X</td>
</tr>
<tr>
<td>Plant management</td>
<td>Plant defence activation chemical</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Plant growth regulator</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>De-suckering (monthly)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Potassium silica</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Foliar fertilising (May-August)</td>
<td>X</td>
</tr>
<tr>
<td>Soil management</td>
<td>Interplant ground cover</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Bare interplant space</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional N as chicken manure</td>
<td></td>
</tr>
</tbody>
</table>
Example 2: Disease suppression
Example 2: Disease suppression

Management options and practices

- Broad focus on general suppression

Research Focus

- Specific suppression

Time & investment of research

- Indicators of disease suppression
- Diagnostic indicators
- Explanatory indicators
- Identification of antagonists

Department of Agriculture, Fisheries and Forestry
Example 2: Disease suppression

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plant showing no symptoms or yellowing</td>
</tr>
<tr>
<td>2</td>
<td>Plant showing slight streaking and /or yellowing of lower leaves</td>
</tr>
<tr>
<td>3</td>
<td>Plant showing streaking and/or yellowing of majority of lower leaves and/or some symptoms on younger leaves</td>
</tr>
<tr>
<td>4</td>
<td>Plant showing extensive streaking and/or yellowing of most or all of the leaves.</td>
</tr>
<tr>
<td>5</td>
<td>Mother plant dead sucker alive</td>
</tr>
<tr>
<td>6</td>
<td>Mother plant and sucker dead</td>
</tr>
</tbody>
</table>
Example 2: External symptoms

Rating 1-6

Foc symptoms (1-6)

Plants showing symptoms (%)

Plants showing symptoms (%)

Date:

Nov-10 Feb-11 Jun-11 Sep-11 Dec-11 Apr-12 Jul-12

Legend:

A B C D

Departm
Example 2: Internal symptoms

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>o vascular discoloration in pseudostem</td>
</tr>
<tr>
<td>2</td>
<td>solated points of discoloration in vascular tissue of the pseudostem</td>
</tr>
<tr>
<td>3</td>
<td>Discoloration of up to one third of vascular tissue of the pseudostem</td>
</tr>
<tr>
<td>4</td>
<td>Discoloration of between one third and two thirds of the vascular tissue of the pseudostem</td>
</tr>
<tr>
<td>5</td>
<td>Discoloration of greater than two thirds and of vascular tissue of the pseudostem</td>
</tr>
<tr>
<td>6</td>
<td>otal discoloration of vascular tissue of the pseudostem</td>
</tr>
</tbody>
</table>
Example 2: Internal symptoms
Example 2: Banana production

Bunches produced (%)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunches produced (%)</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

Bunch weight (kg)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvest date</td>
<td>2011-11-03</td>
<td>2011-12-23</td>
<td>2012-02-01</td>
<td>2012-04-01</td>
</tr>
<tr>
<td>Bunch weight (kg)</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

Cumulative bunch harvest (kg)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative bunch weights (kg)</td>
<td>0.0</td>
<td>100.0</td>
<td>200.0</td>
<td>300.0</td>
</tr>
</tbody>
</table>
Example 2: Disease suppression

Management options and practices

- Broad focus on general suppression
- Specific suppression

- Research Focus

- Time & investment of research
 - Indicators of disease suppression
 - Diagnostic indicators
 - Explanatory indicators
 - Identification of antagonists
Example 2: Disease suppression

Microbial activity

Cellulose degradation

Bacterial - fungal ratio
Example 2: Disease suppression

Management options and practices

- Broad focus on general suppression
- Specific suppression

Time & investment of research

- Indicators of disease suppression
- Diagnostic indicators
- Explanatory indicators
- Identification of antagonists

Department of Agriculture, Fisheries and Forestry
Example 2: Disease suppression –
Biolog Physiological Microbial Community Profiling
Example 2: Disease suppression — Biolog Physiological Microbial Community Profiling

Discriminant analysis

Vectors:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D_Glucosaminic_Acid</td>
<td>1.103</td>
<td>0.081</td>
<td>0.013</td>
</tr>
<tr>
<td>Pyruvic_Acid_Methyl_Ester</td>
<td>-2.598</td>
<td>1.320</td>
<td>1.232</td>
</tr>
<tr>
<td>L_Arginine</td>
<td>3.470</td>
<td>-0.930</td>
<td>0.560</td>
</tr>
<tr>
<td>Cyclodextrin</td>
<td>4.124</td>
<td>2.714</td>
<td>1.653</td>
</tr>
<tr>
<td>N_Acetyl_D_Glucosamine</td>
<td>-1.028</td>
<td>-1.225</td>
<td>0.611</td>
</tr>
<tr>
<td>D_Glucosaminic_acis</td>
<td>-0.026</td>
<td>-0.831</td>
<td>-0.980</td>
</tr>
<tr>
<td>Glycogen</td>
<td>1.968</td>
<td>1.400</td>
<td>0.624</td>
</tr>
<tr>
<td>D_Galactonic_Acid_Lactone</td>
<td>0.504</td>
<td>0.008</td>
<td>0.063</td>
</tr>
</tbody>
</table>

True Group

<table>
<thead>
<tr>
<th>Decision</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100.00</td>
<td>0.00</td>
<td>16.67</td>
<td>0.00</td>
</tr>
<tr>
<td>B</td>
<td>0.00</td>
<td>95.83</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>C</td>
<td>0.00</td>
<td>4.17</td>
<td>83.33</td>
<td>16.67</td>
</tr>
<tr>
<td>D</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>83.33</td>
</tr>
</tbody>
</table>

Department of Agriculture, Fisheries and Forestry
Example 2: Disease suppression - L-arginine

Department of Agriculture, Fisheries and Forestry
Example 2: Disease suppression - Correlation L-arginine v external symptoms

![Graph showing the correlation between L-arginine (abs) and external symptoms (1-6). The graph includes a regression line with an R^2 value of 0.49.]
Model for soil health

Constraints
- Inherent
- Induced

Soil indicators
- Physical
- Chemical
- Biological

Soil functions
- Structural
- Nutritional
- Hydrological
- Pathological
- Toxicological

Management
- Soil
- Plant

Enviro-impact
- Nutrient loss
- Sediment loss
- Chemical loss

Production
- Yield
- Economics
- Disease
Conclusion

• Soil health can be used to improve banana productivity and reduce the enviro-impact by using a model that links soil indicators, soil functions, constraints and management practices.

• Identifying soil constraints means that management practices can be targeted to overcome the limiting factors and indicators used to ensure desirable changes are occurring.

• Suppression of soil borne disease, such as *Fusarium* wilt, can be achieved by overcoming soil constraints and shifting the soil biology to increase indigenous antagonistic organisms.
Acknowledgements

• Co-authors
 • Tegan Kukulies
 • Wayne O’Neill
 • Dr. Gus Molina

• Funding
 • ACIAR
 • Queensland Government
 • Australian Banana Growers Association
 • Horticulture Australia Ltd

• Travel
 • Conference organisers
 • Bioversity International
 • Taiwan Banana Research Institute
Soil health interactions

Physical soil properties
- Soil structure
- Water supply

Solid soil particles
- Air spaces

Physical soil functions

Chemical soil properties
- Nutrient availability

Chemical soil functions

Organic matter

Biological soil properties

Biological soil functions
- Pests & disease suppression
- Toxin degradation

Department of Agriculture, Fisheries and Forestry
Normalising indicators

Constraining production

"Less is better" e.g. Na

"More is better" e.g. K

"Optimum" e.g. Soil pH

Constraining production

Constraint score

Constraint score

Constraint score

Na (meq/100)

K (meq/100)

pH

No constraints on production

Department of Agriculture, Fisheries and Forestry
Agricultural production characteristics

- Bananas
- Wheat
- Citrus
Physical constraints

- Induced and inherent soil constraints.
Linking soil indicators with soil functions

Soil health indicators
- Physical
- Chemical
- Biological

Soil functions
- Structure
- Nutrition
- Water
- Pests & disease
- Toxins
- GHG

Production

Enviro-impact
Constraints to healthy banana soils

Banana production in Australia is an intensive, mechanised industry.
Agricultural soil ecology

Photosynthesis

\[\text{CO}_2 + \text{Sunlight} \rightarrow \text{Organic matter} \]

Parasitism

Mutualism

Undecomposed organic matter
Linking soil indicators, functions & practices

Soil health indicators
- Physical
- Chemical
- Biological

Soil functions
- Structure
- Nutrition
- Water
- Pests & disease
- Toxins
- GHG

Management practices
- Soil
 Amendments, tillage, vegetation cover, fertiliser, pesticides
- Plant